PhilSci Archive

Data Science in Times of Pan(dem)ic

Leonelli, Sabina (2021) Data Science in Times of Pan(dem)ic. Harvard Data Science Review.

[img]
Preview
Text
HDSR_2021.pdf

Download (278kB) | Preview

Abstract

What are the priorities for data science in tackling COVID-19, and in which ways can big data analysis inform and support responses to the outbreak? It is imperative for data scientists to spend time and resources scoping, scrutinizing, and questioning the possible scenarios of use of their work—particularly given the fast-paced knowledge production required by an emergency situation such as the coronavirus pandemic. In this article I provide a scaffold for such considerations by identifying five ways in which the data science contributions to the pandemic response are imagined and projected into the future, and reflecting on how such imaginaries inform current allocations of investment and priorities within and beyond the scientific research landscape. The first two of these imaginaries, which consist of (1) population surveillance and (2) predictive modeling, have dominated the first wave of governmental and scientific responses, with potentially problematic implications for both research and society. Placing more emphasis on the latter three imaginaries, which include (3) causal explanation, (4) evaluation of logistical decisions, and (5) identification of social and environmental need, I argue, would provide a more balanced, sustainable, and responsible avenue toward using data science to support human coexistence with coronavirus.


Export/Citation: EndNote | BibTeX | Dublin Core | ASCII/Text Citation (Chicago) | HTML Citation | OpenURL
Social Networking:
Share |

Item Type: Published Article or Volume
Creators:
CreatorsEmailORCID
Leonelli, Sabinas.leonelli@exeter.ac.uk0000-0002-7815-6609
Keywords: COVID-19, predictive modeling, public health, surveillance, engagement, research planning
Subjects: General Issues > Data
Specific Sciences > Medicine > Epidemiology
Specific Sciences > Medicine > Health and Disease
General Issues > Models and Idealization
General Issues > Science and Society
Depositing User: Sabina Leonelli
Date Deposited: 09 Feb 2023 18:47
Last Modified: 09 Feb 2023 18:47
Item ID: 21743
Journal or Publication Title: Harvard Data Science Review
DOI or Unique Handle: https://doi.org/10.1162/99608f92.fbb1bdd6
Subjects: General Issues > Data
Specific Sciences > Medicine > Epidemiology
Specific Sciences > Medicine > Health and Disease
General Issues > Models and Idealization
General Issues > Science and Society
Date: 2021
URI: https://philsci-archive-dev.library.pitt.edu/id/eprint/21743

Monthly Views for the past 3 years

Monthly Downloads for the past 3 years

Plum Analytics

Altmetric.com

Actions (login required)

View Item View Item